
Parallel Computational Fluid Dynamics:

Current Status and Future Requirements 1

]torst I). Simon 2, William I7. Van Dalsem 3, and l,eonar(to 1)agum 2

NASA Atnes I_eseal'c]l Center

Mail Stop T045-1

Moffett Field, CA 9'1035

April 8, 199.1

Abstract

One of the key objectives of the Applied I{ese_rch Branch in the

Numerical Aerodynamic Simulation (NAS) Systems Division at. NASA

Ames Research Cenler is the accelerated introduction of highI 5" par-

allel machines into a full operational environmenl. In this report we

discuss the l)erformance results obtained from the implementation of

some computational fluid dynamics (CFI)) applications on tile Con-

nection Machine CM-2 and the Intel iPSC/860. We summarize some

of the experiences made so far with the parallel testbed machines at

the NAS Applied Research Branch. Then we discuss the long term

computat.ional requirements for accomplishing some of the grand cha.l-

lenge problems in comt)utational aerosciences. We argue that only

massively parallel machines will be able to meet these grand challenge

requirements, and we outline the computer science and algorithm re-

search challerlges ahead.

Keywords: parallel architectures, MIMD, SIMD, computational [luid dy-

namics.

AMS Subject Classificatioll 76-08, 55W05, 65N99.

CR Subject Classilication G. 1.8, .1.2, C. 1. l, ('.. 1.2.

_Sections of this report appear,_d as [43] and [42].
2The aut.hor is with the Applied Ilesearch l_;ranch, Mail Stop T045-1. The author is

an emph)yee of (?omput, er Sci('llces Corporat.ion. This work is supported through NASA
(?ontract NAS 2-12961.

aThe author is with the Applied (_omput, ational Fluids I_ranch, Mail Stop T045-2.

1 Introduction

One of the key tasks of the Applied Research Branch in tile Numerical Aero-

dynamic Simulation (NAS) Systems Division at NASA Ames tlesearch Cen-

ter is the accelerated introduction of highly parallel and related key hard-

ware and software technologies into a full operational environment (see [35]).

Lt"rom 1988 - 1991 a testbed facility has been established for the develop-

ment and demonstration of highly parallel computer teclmologies. Currently

a 32K processor Connection Machine CM-2 and an 128 node Intel iPSC/860

are operated at the NAS Systems Division. This testbed facility is envisioned

to consist of successive generations of increasingly powerftd highly parallel

systems that are scalable to high performance capabilities beyond that of

conventional super computers. In the last two years a number of large scale

computational fluid dynamics al_plications have been implemented on the two

lestbed machines, and the potential of the parallel machines for production

use has been evaluated. Beyond that, a systematic performance evaluation

effort has been initiated (see [7, 2, 3]), and basic algorithm research has been
cot It inued.

In this report we will first give a brief description of the capabilities of the

parallel machines at NASA Ames. Then we will discuss some of the research

carried out in the implementation of computational fluid dynamics (CFD)

applications on these parallel machines. We focus here on those applications

where we have more detailed knowledge because of our own involvement:

3D Navier-Stokes multi-block structured grid codes, an explicit 2D Euler

solver for unstructured grids, and a simulation based on particle methods.

Finally we will outline the computational requirements for large scale aero-

sciences grand challenge applications t)5,' analyzing one such application at

NASA Ames. In the last section we offer some preliminary conclusion_ on

tile performance of current parallel machines for CFD applications, as well as

the potential of the different architectures for production use in the future.

Another summary of the experience with parallel machines at NASA Ames is

given by D. Bailey in [5]. A more comprehensive survey of tile NASA Com-

putational Aerosciences Program with more emphasis on the applications is

given in [22].

2 Parallel Machines at NASA Ames

2.1 Connection Machine

The Thinking Machines Connection Machine Model CM-2 is a massively

parallel SIMI) coml)uter consisting of many thousands of bit serial data pro-

cessors under the direction of a front end computer. The system at NASA

Ames consists of 32768 bit serial l)rocessors each with 1 Mbit of memor.y and

operating at 7 Mttz. The processors and melnol'y are packaged as 16 in a

chip. Each chip also contains the routing circuitry which allows any proces-

sol" to send and receive messages from any other processor in tile system. In

addition, there are 1021 6.l-bit Weitek floating pt_int processors which are

fed from the bit serial processors through a special purpose "Sprint" chip.

There is one Sprint chit) connecting every two CM chil.)S to a Weitek. Each

Weitek processor can execute all add and a multiply each clock cycle thus

performing at 14 MFLOPS and yielding a peak aggregate performallce of 1.1

GFL()I)S for tlle system.

The Connection Machine call be viewed two ways, either as an eleven

dimensional hypercube connecting tile 2048 (?1\,| chit)s or as a ten dimen-

sional hypercube connecting the 1024 processing elements. The first view is
tlle "Iieldwise" model of the machine which has existed since its introduction.

This view admits to the existence of at least 32768 physical processors (when

using tile whole machine), each storing data ill fields within its local memory.

The second is tile more recent "slicewise" model of the machine, which ad-

mits to only 102:1 processing elements (when using tile whole machine), each

storing data in slices of 32 bits distributed across the ;/2 physical processors

ill tlle processing element. Both models allow for '_virtual processing", where

the resources of a single processor or processing element may be divided to

allow a greater number of virtual processors.

Regardless of the machine model, the architecture allows interprocessor

communication to proceed ill three manners. For very general commmficati(m

with no regular pattern, the router determines the destination of messages

at run time and directs the messages accordingly. This is referred to as gem

era l router communication. For communication with an irregular but static

pattern, the message paths may be pre-coml)iled and the router will direct

nlessages according to the pre-compiled l)aths. This is referre(l to as compiled

conim(tnicatiou and can be .5 times faster than general roltter colmnunication.

Finally, for communicationwhich isperfectlyregularand involvesonly shifts
alonggrid axes,the systemsoftwareoptimizesthe data layout by ensuring
strictly nearestneighborcommunicationandusesits ownpre-compiledpaths.
This is referredto as NEWS (for "NorthEastWestSouth")communication.
Despitethe name,NEWS communicationis not restrictedto 2-dimensional
grids,and tip to 31-dimensionalNEWSgrids maybespecified.NEWScom-
municationis tile fastest. An analysisof the communicationspeedof the
CM canbe found in [29].

Tile I/O subsystems connect to the data processors through an I/O con-

troller. An I/O controller connects to 8192 processors through 256 i/O lines.

There is one line for each chip but the controller can only connect to 256

lines simultaneously and must treat its 8K processors as two banks of dK

each. Each I/O controller allows transfer rates of up to 40 MB per second.

In addition to an I/O controller there can be a fi'ame buffer for color graphics

output. Because it is connected directly to the backplane rather than through

the I/O bus, the frame buffer can receive data fi'om tile (_M processors at 256
M]_ per second. The system at NASA Ames has two frame buffers connected

to two high resolution color monitors and four I/O controllers connected to

a 20 GB Data\'ault mass storage system.

The Connection Machine's processors are used only to store and process

data. The program instructions are stored on a front-end computer which

also carries out any scalar computations. Instructions are sequenced from

the front end to the CM through one or more sequencers. Each sequencer

broadcasts instructions to 8192 processors and can execute either indepen-

dent of other sequencers or combined in two or four. There are two front end

computers at NASA Ames, a Vax 8350 and a Sun 4/490, which currently sup-

port about 100 users. There are two sequencer interfaces on each computer

which allow up to four dedicated processes. In addition, tile system software

supl)orts the Network Queue System (NQS) and time sharing through the

CM Time Sharing System (CMTSS).

The Connection Machine system was first installed at NASA Ames ill

,June of 1988. Since then the system has undergone a number of upgrades,

the most recent being completed in February of 1991. An assessment of tile

system is given in [40]. Perhaps its greatest strength, from a user standpoint,

is the robust system software. This is of critical importance to NASA as it

moves its parallel machines into production mode.

2.2 Intel iPSC/860

The Intel iPSC/8(i0 (also knowll as Touchstone Gamma System) is based

on the 64 bit i860 microprocessor by Intel [23J. The i860])as over l million

transistors and runs at J10 MHz. The theoretical peak speed is 80 MFLOPS

in a2 bit floating point and 60 MFLOPS for 6.1 bit floating point operations.

The i860 features a2 integer address registers, with 32 bits each, and 16

floating point registers with 61 bits each (or a2 floating point registers with

32 bits each). It also features an 8 kilobyte on-chip data cache and a _I

kilobyte instruction cache. There is a 128 bit data path between cache al_(l

registers. There is a 6.] bit data path between main memory amt registers.

The i8(i0 has a number of advanced features to facilitate high execution

rates. First of all, a number of important operations, including floating

point add, multiply and fetch froth main memory, are pipelined operations.

This means that they are segmented into three stages, and in most cases a

new operation can be initiated every 25 nanosecond clock period. Another

advanced feature is the fact that multiple instructions can be executed in

a single clock period. For example, a memory fetch, a floating add and a

floating multiply can all be initiated in a single clock period.

A single node of the iPSC/860 system consists of the i860, 8 megabytes

(MB) of dynamic random access memory, and hardware for communication

to other nodes. I'k)r every 16 nodes, there is also a unit service mo(lule to

facilitate access to the nodes for diagnostic purposes. The iPS(?/S60 system

at NASA Ames collsists of 128 computational nodes. The theoretical peak

performance of this system is thus approximately 7.5 GFLOt)S on 61 bit
data.

The 128 nodes are arranged in a seven dimensional hypercube using the

direct com_ect routing module and the hypercube interconnect technology of

the iPSC/2. The point to point aggregate bandwidth of the interconnect sys-

tem, which is 2.8 Ml-t/sec per channel, is the same as on the iPSC/2, l[owever

the latency for the message passing is reduced fl'om about 350 microseconds

to about 90 microseconds. The improved latency is mainly a. product of the

faster execution of the message passing software on the i860 coral)areal to the

slower Intel 80386 on the iPSC/2.

Attache(t to the 128 computational nodes of the NASA Ames system

are ten 1/O nodes, each of which can store approximately 700 MB. The total

capacity of the I/O system is thus about 7 GB. These I/O l_o(tes ol)erate con-

currently for high throughput rates. The completesystemis controlledby a
systemresourcemodule(SRM), which isbasedon an Intel 80386processor.
The SRMoriginallyhandledcompilationandlinking of sourceprograms,as
well as loadingthe executablecode into the hypercube nodes and initiating

execution. As such, the SRM became a serious bottleneck in the system, due

to its slowness in compiling and linking user codes. Intel has since allevi-

ated the problem by providing cross-compilers for Sun and Silicon Graphics

workstations and system software to allow remote loading of executable code.

During 1990 the iPSC/860 has been thoroughly investigated at NASA

Ames. A first set of benchmark numbers, and some CF'D applications per-

tbrmance numbers have been published in [d]. A more recent summary is

given by Barszcz in [8]. As documented in [8] from an overall systems aspect

the main bottleneck was the SRM, which is not able to handle the demands

of a moderately large user community (about 50 to 100 users) in a produc-

tion environment. Another important result of the investigations was the

outcome of a study by Lee [25]. Lee's analysis of the i860 floating point

perff)rmance indicates that on typical CFD kernels the best performance to

be expected is in the 10 MFLOPS range. Finally we mention a two perfor-

mance studies of the I/O system by I,ou [30] and Ryan [39], which measure

the I/O performance of the concurrent file system (CFS), the parallel I/O
device delivered by Intel.

3 Structured Grid Applications

Structured grid flow solvers, in particular multi-block structured grid flow

solvers, are the main class of production (_FI) tools at NASA Ames. A

nulnber of different et[o,'ts ,,,,'ere directed toward the implementation of such

capabilities on parallel machines. One of the first CFD results on the CM-2

was the work by Levit and Jespersen [26, 27], which was recently extended

to three dimensions [28]. Their implementation is based on the successful

AIRC21) and ARC31) codes developed by Pulliam [38]. W.\-_rk by Barszcz and

Chawla [9] is in progress to implement F3D, a successor code to AR(:aD,

on the (LM-2. On the iPS(:/860 Weeratunga has implemented ARC2D (for

early results see [4]), and work is in progress to implement F3D. Weeratunga

also has developed three simulated CFD applications based on structured

grid flow solvers t\)r the NAS Parallel Benchmarks, which are described in

(_hapter3 of [7].

The rescl]ts obtahled by VV'eeratt2,ga; Barszcz, Fatoohi. and Venkatakr-

ishnan on the simulated CFD applications benchmark are indicative for the

current perlLrmance level of parallel maclfi_es on implicit (_F]) algorithms.

]_erformame results for "kernel" l>ejichmarks do not fully reflect the compl_-

tational req,Jirements of a realistic, state-of-the-art CFI) applh:ation. This is

because a data structure that is optimal for one particular part of the compu-

tation on a given system might be very inei[icient for allothef part Of tile (:()lll-

putation. As a result, the three "simulated CF]) application" benchmarks

were devised. These three benchmarks are intended to accurately represent

the l)rincipal comptttational and data movement requirements of modern itn-

plicit (:teD applicatiotls. They model the main buihliilg blocks of CI"I) codes

designed at NASA Ames for the sohttion of 3D Euler/Navier-Stokes equa-

tions using Iinite-volttme/finite-difference discretization on structured grids.

There is one important feature which characterizes these simulated appli-

cations from a COlnputational point of view. All three involve approximate

factorization techniques, which in turn require the solution of three sets of

multiple, independent, sparse, but structured systems of linear equations at

each time step. Each of three sets of solves keeps one coordinate direction

tixed, and solves the inultiple sets of linear systems in the direction of the

grid planes orthogonal to tile fixed direction. Thus the three dimensional

computational grid must be accessed by planes in three different directions.

This has a very important implication for distributed memory machines: no

single allocation scheme for the three dimensional grid is <>primal. In order

to carry out the solver phase efficiently in the three different grid dit'ections

the grids will have to be redistribtlted a.lnong the processors. The key to

an elTicieltt implemetttatiotl of tile sim,lated application benchmark is then

to devise optimal distribtttio, a l_d commtmication sc[leltles t))r the transition

between the three solve phases at each time step I.

The first of the simulated applications is tile LIT benchmark. Il_ this

benchmark, a regular-sparse, block (5 x 5) lower and upper triangular system

is solved. This problem represents the computations associated with tile

implicit operator of a newer class of implicit ('.t"D algorithms, typified at

_lt should be pointed out that. this discussion of the simulated applications does not
apply to all production CI'_I) codes at. NASA Ames. For example the wide]y .sed F3D
code, as well as t.h(_ lIPS code, are for example based <m a l.wo faclor scheme.

Table 1' Results for tile LU Sinmlated CFD Application

System

Y-MP

ipsc/s60

CM-2

No.

Proc.

1

S

6d

128

8K

16K

32K

Time/Iter. MFLOPS

(secs.) (Y-MP)

1.73 246

0.25 1705

3.05 139

1.90 224

5.23 82

3.,10 125

2.29 186

NASA Ames by tile code INS3D-LIi [,17]. This problem exhibits a somewhat

limited amount of parallelisn_ compared to the next two.

The second simulated CFD application is called the scalar penta-diagonal

(SP) benchmark. In this benchmark, multiple independent systems of non-

diagonally dominant, scala.', penta-diagonal equations representative of com-

putations associated with the implicit operators of CFD codes such as ARC3D

[38] at NASA Ames Research Center. SP and BT are similar in many re-

spects, but there is a fundamental difference with respect to the communi-

cation to computation ratio.

The third simulated CED application is called the block tri-diagonal

(BT) benchmark. In this benchmark, multiple independent systems of non-

diagonally dominant, block tri-diagonal equations with a (5 x 5) block size

are solved (for a related discussion of the parallel implemenation of ARC3D

see also [34]).

Performance figures for the three simulated CFD applications are shown

in Tables i, 2 and 3. Timings are cited in seconds per iteration. In M1 three

tables results are reported for grids of size 6.1 x 6,t x 64. A complete solution

of' the LI 7 benchmark requires 250 iterations. For the SP benchmark, ,'10()

iterations are required. For the BT benchmark, 200 iterations are required.
The MFI,OPS in these tables for the parallel machines are based on an

operation count established for the sequential version of the program.

Table2: Results for the SP Simulated CFD Ap

No. lime/Iter. Ml'l,Ot S

System l)roc.

Y-MP 1

S

iPS(I/S60 64
CM-2 8K

16K

32K

(secs.) (Y-MP)

1.1S 250

0.16 1822

2. '12 122

9.75 30

5.26 56

2.70 109

_lication

Table 3: Results for the BT Simulated CFD Application

No. Time/Iter.

Systein Pro('. (secs.)
57-M t) l

8

iPSC/860 64

(?M-2 161(

32K

MFLOPS

(Y-MP)
3.96 221

0.57 155'1

d.54 199

16.61 51

9.57 9,1

4 Unstructured Grid Applications

We discuss here work on all unstructured upwind finite-volume explicit flow

solver for tile Euler equations in two dimensions that is well suited for

massively parallel implementation. The mathematical formulation of this

flow solver was proposed and implemented on the Cray-2 by Barth and

.lespersen[10]. This solver has been implemented on the CM-2 by Hammond

and Barth [20], and on tile Intel iPSC/860 by Venkatakrishnam SilnOt/, and

Barth [.16].

The unstructured grid code developed by Barth is a vertex-based finite-

volume scheme. The control volumes are l_On-overlapping polygons which

surround the vertices of the mesh, called the "dual" of the mesh. Associated

with each edge of the original mesh is a dual edge. Fluxes are computed along

each edge of the dual in an upwind fashion using an approximate Riemann

solver. Piecewise linear reconstruction is employed which yields second order

accuracy in smooth regions. A four stage Runge-Kutta scheme is used to

advance the solution in time. l?luxes, gradients and control volumes are

all constructed by looping over the edges of the original mesh. A complete

description of tile algorithm can be found in [10, 20]. It is assumed that a

triangularization of the computational domain and the corresponding mesh

has been computed.

In both implementations tile same Ikmr element wing cross-section test

case has been used. The test case unstructured mesh includes 15606 vertices,

45878 edges, 30269 faces, and 9'19 boundary edges. The (tow was computed

at a freestream Math number of .1 and 0 degrees angle of attack. The code

%r this test case runs at 150 MEI,OPS on the NAS Cray Y-MP at NASA

Alnes, and requires 0.39 seconds per time step. In the ('.ray implementation,

vectorization is achieved 1)3:coloring the edges of the mesh.

4.1 SIMD Implementation of Unstructured Solver

l:or the implementation on the CM-2 ttammond and Barth [20] used a novel

partitioning of the problem which minimizes the computation and commu-

nication costs on a massively parallel computer. The following description

follows [20] closely. In a mesh-vertex scheme, solution variables are asso-

ciated with each vertex of the mesh and flux computation is performed at

edges of the non-overlapping control volumes which surround each vertex.

9

Ill conventional parallel implementations this operation is partitioned to be

performed edge-wise, i.e., each edge of the control volume is assigned to one

processor (edge-based). The resulting flux calculation contributes to two

control volumes which share tile particular edge.

In tile partitioning tlsed by ttanltnond and Barth. each vertez of the lI/esh

is assigned to one processor (vertex-based). Flux computations are identical

to the edge-based scheme but computed by processors associated with ver-

tices. Each edge of the mesh joins a pair of vertices and is associated with

one edge of the control volume.

One can direct an edge (i,j) to determine which vertex in the pair com-

putes the flux through the shared edge of the control volume, (k',j'). When

there is a directed edge from i to j, then the processor holding vertex j sends

its conserved values to the processor holding vertex i, and the flux across

the common control volume edge is computed by processor i and accumu-

lated locally. The flux through (/,a j,) computed by the processor holding

vertex i is sent to tile processor holding vertex j to be accumulated nega-

tively. Ilammond and Barth show that their vertex-based scheme requires

50% less communication and asymptotically identical amounts of computa-

tion as compared with the traditional edge-based al_proach.

Another important feature of the work by llammond and Barth is the use

of fast communication. A feature of the communication within the flow solver

here is that the communication pattern, although irregular, remains static

throughout the duration of the computation. The SIMI) implementation

takes advant age of t his by using a mapping tech niq ue developed by It ammond

and Schreiber [21] and a "Communication Compiler" developed for the CM-2

t)3: Dahl [17]. Tile former is a highly parallel graph mapping algorithm that

assigns vertices of the grid to processors in the computer such that the sum

of the distances that messages travel is nlinimized. The latter is a software

facility for sched uling corn pletely general commu n icat ions on t he Colmect ion

Machine. Tile user specifies a list of source locations and destinations for

messages and enables one to fully utilize the large communication bandwidth
of the machine.

llammond and Barth have incorporated the mapping algorithm and the

communication compiler into the flow solver running on the CM-2 and have

realized a factor of 30 reduction in communication time compared to using

naive or random assignments of vertices to processors and the router. Origi-

nail3:, using gK processors of the CM-2 and a virtual processor (\:P) ratio of

10

2, ltammondandBerth carriedout 100time stepsof tile flowsolverill about
71.62seconds.An improvedimplementationby llammond in [19]resulted
in 13secondsper 100time steps,which is equivalentto 136MFLOPS.This
doesnot includesetuptime.

4.2 MIMD Implementation of Unstructured Solver

Similar to the SIMD implementation one of the key issues is the partitioning

of the unstructured mesh. In order to partition the mesh Venkatakrishnan et

al. [.'16]employ a new algorithm for the graph partitioning problem, which has

been discussed recently by Simon [/11], and which is based on the computation

of eigenvectors of the Laplacian matrix of a graph associated with the mesh.

Details on the theoretical foundations of this strategy can be fo,nd in [37].

Detailed investigations and comparisons to other strategies (cf. [,tl]) have
shown that the spectral t)artitioning produces sul)domains with the shortest

boundary, and hence tends to minimize communication cost.

After the application of the partition algorithm of the previous section.

the whole finite volume grid with triangular cells is partitioned into P sub-

grids, each subgrid contains a number of triangular cells which form a single

connected region. Each subgrid is assigned to one processor. All connectivity

information is precomputed, using sparse matrix type data structures.

Neighboring subgrids communicate to each other only through their in-

terior boundary vertices which are shared by tire processors containing the

neighboring subgrids. In the serial version of the scheme, field quantities

(mass, momentmn and energy) are initialized and updated at each vertex

of tire triangular grid using the conservation law for the Euler equations ap-
plied to the dual (:ells. Each processor l)erforms the same calculations on

each subgrid as it would do on the whole grid in the case of a serial compu-

tation. The difference is that now each subgrid may contain both physical

boundary edges and interior boundary edges, which have resulted fl'om grid

partitioning. Since a finite volume approach is adopted, the comtnunication

at the inter-processor boundaries consists of summing tile local contributions

to integrals such as volumes, fluxes, gradients etc.

The performance of the Intel iPSC/860 on the test problem is given in

Table 4. The MFLOPS given are based on operation counts using the (:ray

11

hardwareperformancemonitor. The ef{iciency is computed as

E f f icie_cg((Z,:) =
MFLOP,q" with N proc,_

N * (MI"LOt).q with lproc)
• 100.

Table Jl: Performance of Unstructured Grid Code on

iPSC/860

Processors secs/step MFI, OPS efficiency(%)
2

:'1

8

16

32

6,'1

128

7.39 7.9

3.70 15.8

1.9,t 30.2

1.08 5_1.1

0.59 99.2

0.31 187.5

0.19 307.9

86

86

82

74

67

6'1

52

the Intel

In sumtnary the pertbrmance figures on the ut_str,tctured grid code are

given in Table 5, where all MFI,OPS nulnt)ers are Cray Y-MP equivalent
II Illllbel+S.

Table 5: Performance Comparison of Unstru

Machine Processors secs/slep

Cray Y-MP

Intel il)SC,/860

CM-2

1

61

128

8192

0.39

0.31

0.19

0.13

ctured Grid Code

MFI,()PS

150.0

187.5

307.9

136

12

5 Particle Methods

Particle methods of silnulation are of interest primarily for high altitude,

low density flows. When a gas becomes sufficiently rarefied tile cotlstitutive

relations of tile Navier-Stokes equations (i.e. tile Stokes law for viscosity

and the Fourier law for heat conduction) no longer apply and either higher

order relations must be employed (e.g. the Burnett equations [all), or the

continuum approach must be abandoned and tile molecular nature of the gas

must be addressed explicitly. The latter al)proach leads to direct particle

simulat ion.

Ira direct particle simulation, a gas is described by a collection of simu-

lated tnolecules thus completely avoiding any need for" differential equations

explicitly descrit)ing the flow. By accurately modeling the microscopic state

of tire gas, the macroscopic description is obtained through the al)t)rol)riate

integration. The [)ritnary disadvantage of this apl)roach is that the computa-

tional cost is relatively large. Therefore, although tire molecular description

of a gas is accurate at all densities, a (lirect particle simulation is competitive

only for low densities where accurate continuum descriptions are difficult to

make.

For a small discrete time step; the molecular motion and collision terms

of the []oltzmann equation may be decottpled. This allows the simulated

particle flow to be considered in terms of two consecutive but distinct events

in one time step, specifically there is a collisionless motion of all particles

followed [)y a motionless collision of those pairs of particles which have been

identified as colliding partners. The collisionless motion of particles is strictly

deterministic and reversible. However, tile collision of particles is treated on

a probabilistic basis. The particles move through a grid of ceils which serves

to define the geometry, to identify colliding partners, and to sample the

macroscopic quantities used to generate a solution.

The state of the system is updated oll a per time step basis. A single

tilnt _ step is comprised of {ire events:

1. (!{Jllisionless motion of particles.

2. Enforcement o1"boundary conditions.

3. 1)airing of collision l)artners.

13

.1.Collisionof selectedcollisionpartners.

5. Samplingt_rmacroscopicflowquantities.

Detaileddescriptionof thesealgorithmsmaybe found in [32]and [13]

5.1 SIMD Implementation of Particle Simulation

Particle simulation is distinct from other CFD applications in that there are

two levels of parallel granularity in the method. There is a coarse level con-

sist.ing of cells in the simulation (which ave approximately equivalent to grid

points in a continuum approach) and there is a flue level consisting of indi-

vidual particles. At the time of the CM-2 implementation there existed only

the fieldwise model of the machine, and it was natural for Dagum [13] to de-

compose the problem at the finest level of granularity. In this decomposition,

the data for each particle is stored in an individual virtual processor in the

machine. A separate set of virtual processors (or VP set) stores the geome-

try and yet another set of virtual processors stores the sampled macroscopic

quantities.

This ([ecomposition is conceptually pleasing however in practice the rela.-

tire slowness of the Connection Machine router can prove to be a bottleneck

in the application. I)agum [13] introduces several novel algorithms to mini-

mize the amount of communication and improve the overall performance in

stlch a decomposition. In particular, steps 2 and 3 of the particle simulation

algorithm require a somewhat less than straightforward approach.

The enforcement of boundary conditions requires particles which are

about to interact with a boundary to get the al)prop,'iate boundary infor-

mation from the \:P set storing the geometry data. Since the number of

particles m_dergoing boundary interaction is re]alively small, a master/slave

algorithm is used to minimize both communication and computation. In this

algorithm, the master is the VP set storing the particle data. The master

creates a slave VP set large enough to accommodate all the partMes which

must undergo bomlda.ry interactions. Since the slave is much smaller than

the master, instructions on the slave VP set execute much faster. This more

than makes up for the time that the slave requires to get the geometry in-

formation and to both get and return the particle information.

The pairing of collision partners requires sorting the particle data such

that particles occupying the same cell are represented 1)y neighboring virtual

14

processorsill the onedimensionalNEWSgrid storingthis data. Dagum[15]
(h'scribesa very efficient sorting algorithm suitable for this purpose. The
algorithn_makesuseof the realizationthat the particledata movesthrough
the CM processorsin a manneranalogousto the motion of the particles in
the simulation. The mechanismfor disorderis the motionof particles,and
the extentof motionof particles,overa singletime step,is small. This can
beusedto greatly reducetheamountof communicationnecessaryto re-order
the particles.

Thesealgorithmshavebeenimplementedin a three-dimensionalparticle
simulationrunningonthe CM-2. Theimplementationwaswritten in C/Paris
and is describedin [16].The codehasbeenusedto simulatethe flowovera
re-entryvehicleusingover3.2x 10r particles in a grid with/1.5 x 105 cells at a

rate of 2.:ltlsec/t)article/time step using all 32K processors. By comparison, a

fully vectorized equivalent simulation on a single processor of the Cray YMP

runs at 1.0/lsec/particle/time step and 86 MFLOPS as measured by the

(_ray hardware performance monitor. (Note that a significant fraction of a

particle simulation involves integer arithmetic and the MH_()P measure is

not completely indicative of the amtmnt of computation involved).

5.2 MIMD Implementation of Particle Simulation

The MIMD implementation differs from the SIMD implementation not so

much because of the difference in programming models but because of the

difference in granularity between the machine models. Whereas the CM-2

has 32768 processors, the iPSC/860 has only 128. Therefore on the iPSC/S60

it is natural to apply a spatial domain decomposition rather than the data

object decomposition used on the (JM-2.

In McDonald's [33] implementation, the spatial domain of the simulation

is divided into a number of sub-domains greater than or equal to the desired

re,tuber of node processes. Colnmunication between processes occurs as a

particle passes from one region to another and is carried out asynchronously,

thus allowing overlapping communication and computation. Particles cross-

ing region "seams" are treated simply as an additional type o[" l)oundary

condition. Each simulated region of space is surrounded by a shell of extra

cells that. when entered by a particle, directs that particle to the neighbor-

ing sub-domains. This allows the representation of simulated space (i.e. the

geometry definition) to be distributed along with the particles. The aim is

15

Table6: Performance of Particle
Processors ps/prt/step

2

'1

8

L6

32

6.1

128

2d.,1

12.5

6.35

3.25

1.63

0.85

0.42

Simulation on the Intel iPSC/860

MFLOPS efficiency(%)

3.5 97

6.9 95

13.5 9:{

26.5 91

52.8 91

101 87

215 88

to avoid maintaining a representation of all simulated space which, if stored

on a single processor, would quickly become a serious bottleneck for large

simulations, and if replicated would simply be too wasteful of memory.

Witlfin each region the sequential or vectorized particle simulation is ap-

plied. This decompositiot_ allows for great flexibility in the physical models

that are implemented since node processes are asym:hronous and largely in-

dependent of each other. Recall that communication between processes is

required only when particles cross region seams. This is very fortuitous since

the particle motion is straightforward and fully agreed upon. The important

area of research has to do with the modelling of interaction of particles with

solid boundaries and each other, and since this part of the problem does not

directly atfect communication, particle models can evolve without requiring

great algorithmic changes.

.Mcl)onald's implementation is fully t hree-dimensional wit h dynamic load

balancing and chemistry modelling. The performance of the code on a 3I)

heat bath is given in Table 6. The geometry and spatial decomposition of

tile heat bath simulation e:ra,qgeraled the area to w)lmne ratio of the regions

in order to be conservative in approximating the perforlnance in a real ap-

plication. The most promising feature of these results is the linear speed

tl l) obtained when the problem size is allowed to scale with the number of

processors. This indicates that the performance of the code should contimw

to increase with larger system configurations.

The domain decomposition is dynamic thus permitting a good load bal-

ance to exist throughout a calculation. I,oad t)alallcing is accolnf)lishe(l by

allowing a tmmber of sub-domains to exist at each l)rocessing node. As

16

tile load becomes uubalanced, sub-domains are reassigned to processors ill

a manner that approximates an equal workload at each node. The balanc-

ing operation is repeated a number of times as tile solution develops but

is unnessecary once a steady state situation is reached. Other simulation

costs such as memory usage and communication can also be balanced by ap-

propriately assigning sub-domains to processors. For example, if neighboring

sub-domains in the physical domain are assigned to the same processor, com-

munication is not required as a particle moves from one sub-domain to the
next.

For the particle methods the corresponding summary of performance fig-

ures for all three machines can be found in Table 7. The figures in Table

7 should be interpreted very carefully. The simulations run on the different

machines were comparable, but not identical. The MFIX)PS are Cray Y-MP

equivalent MFLOPS ratings based on the hardware performance monitor.

Only 32-bit arithmetic is required ill the method however 6_l-bit arithmetic

is used on the Cray systems.

Table 7: Performance Comparison of Particle Simulation Code
Machine Processors #secs/particle/step MI'LOPS

Cray 2

Cray Y-MP

Intel iPSC/860
CM-2

1

1

128

32768

2.0

1.0

0.4

2.0

13

86

215

43

17

6 Grand Challenge Computational Require-

ments

\'Ve would like to contrast now what has been achieved so far with the "Grand

(',hallenges" to be solved oil parallel machines in the 1990s. As part of the

"Federal tligh Perfornlance Computing Program", NASA's portion of the

"High Pel'formance (k)ml)uting and Coinmunication Program (t[PCCP)" fo-

cuses on research and development in areas which show promise to deliver

new capabilities to important NASA missions by the late 1990s (for more de-

tails see [36]). Two NASA gra, nd challenges have been chosen a,s focal points

for the tIt)CCt). A grand challenge is a fundamental problem in science and

engineering, with broad applications; whose solution would be enabled by the

application of high performance computing technology, which could become

availaMe in the near future. An important criteriou for the selection of grand

challenge applications was the breadth of technical considerations presented

in a grand challenge, as well as the potential for applying the newly (level-

oped technologies l)eyond the specific problem area. The two NASA grand

challenges are:

• integrated, multi-disciplinary simulations and design optimizations of

aerospace vehicles throughout their mission profiles.

• multi-disciplinary modeling and data analysis of earth and space science

physical phenomena.

The first grand challenge is the focus of the NASA Computational Aero-

Sciences (CAS) program [22]. Within this program, activities are focused

on the development of multi-disciplinary design tools for the high-speed

civil transport (ItSCT) and high-performance aircraft (IIPA). In the high-

pel'forlnance aircraft area, the primary interest is to develop the capability

to predict the performance of next generation fighter concepts operating in

the most critical portions of their flight regime, qb achieve performance lev-

els beyond present generation vehicles, these next gel_eratiou lighters designs

must include higher levels of system integration than can be obtained with

present design tools. Towards this goal, aerodynamic, propulsioll system,

CoIItI'OIS, structural, and even acoustic, analysis modules will t)e integrated

i_to a single software system. The challenges pose(t I).y the development

18

and applicationof sucha multi-disciplinaryhigh-perfornlauceaircraft ailal-
ysis tool will be usedto illustrate the computational issues in such gralld

challenge comptit at iozls.

6.1 Grand Challenges of the 1990's (An Example)

Powered-lift aircraft utilize a mix of wing-borne and propulsive lift to achieve

vertical or short take-off and landings (V/STOL). With careful design, powered-

lift aircraft can also out perform conventional aircraft in other portioils of the

flight envelope via the use of powered-lift features (e.g., vectoring thrust to

achieve super maneuverability). Successful powered-lift aircraft designs are

developed from a detailed understanding of the interaction of very complex

fluid flows (see Figure 1); with all of the major aircraft sub-systems, including

the airframe, alld prol)ulsion and control systems. Until recently, no com-

putational techniques have been available for the analysis of these complex

p_wered-lift flows [15], and multi-disciplinary interactions [1]. tte_ce, the

desigtl of high-performance powered-lift aircraft has been among the most

time-collsuming and costly aerospace design activities. As an example, the

Harrier was originally collceived in the mid 1950's and is still undergoing

significallt desigH studies [18]. Therefore, developmeilt of adval_ced multi-

disciplinary analysis tools is being pursued.

A successful corn put at ional design tool for high-perfortnatlce povcered-li ft

aircraft must be able to predict aerodynamic, thermal, and acoustic loads

[Lr a vehicle during operations in-ground-effect, transition from jet-borHe

to wing-borne flight, a,d in up-and-away flight. Also of key interest is the

prediction of e.gine performance during V/STOL and high-angle-of-attack

maneuvers, when inlet flow distortion may degrade thrust or result in e.gine

compressor stall. The V/STOL and transition modes also put severe chal-

leuges on the performance of the control system in utilizing the airframe and

propulsion systems to retain stable flight.

To model these interactiotls, at least six computational modules must be

iTltegrated (see Figure 2):

• Navier-Stokes

• Engine perfovtnatlce

• Structural Ileatiilg

19

Figure 1: Harrier Jet in Ground Effect

• Acoustics

• Control (includingpilot modelor auto-pilot)

• Aircraft dynamics

Work is presentlym_derway in the Powered-Lift Group of the Applied

Conlputationa] Fluids Branch at NASA-Ames lleseal'ch Center towards the

Navier-Stokes/Structural Heating/Engine Deck analysis of a Harrier AV-SB

in-ground-effect [d4]. Work is also underway at NASA- Lewis to develop

advanced propulsion system analysis capabilities. Futm'e]IPCCP high per-

formance aircraft goals include integrating the airccaft and propulsiotl anal-

ysis tools presently being developed at Ames and I,ewis, respectively, into a

complete vehicle analysis tool applicable to next generation lighter concepts.

6.2 Surface Modeling and Grid Generation Require-

ments

A major bottleneck in the application of the described computatiot_al de-

sign tools will be the develol)meut of surface modeling and grid generation

2O

l"igure 2: Powered-Lift Integrated Multi-Disciplinary System

software which allows:

1. Surface model definition ill less than 1 week

2. Complete grid generation in less than 1 week

3. Design change/regridding of components in less than 1 day

'1. Vehicle deformation (e.g., aero-elastic effects) during computation

5. Relative vehicle motion (e.g.. landing/take-off) and etrector (e.g., ttaps

and jets) movement during computation

Tasks 1-3 require the development of powerful interactive software tools

on workstation platforms, with Task 2 requiring some distributed processing

to a super computer (vector or parallel). These requirements are very chal-

lenging, but do not necessarily involve parallel computers, and will not be
addressed in detail here.

Tasks '1 and 5 must be performed during the numerical simulation on the

parallel computer systems. Accommodating vehicle deformation ('Task ,1) will

require that a parametric representation (e.g., NI,_IRBS)of the vehicle surface

21

resideon the parallel computer, and that this geometric representation can

be manipulated and sampled dynamically without user intervention. It will

also be required that new voll2me grids be created dynamically, using the

deforming vehicle geometry as the new boundary condition f_t' the algebraic

or PDE (e.g., elliptic) volume grid generator. Accounting for vehicle and

effector movemeIlt (Task 5) will be best accommodated using an overset grid

techuology (e.g. [11, 12]). In this case, as the aircraft moves in relationship to

the ground (for example) the grids attached t.o the aircraft and ground will be

in relative motion, aad new interpolation stencils must be computed at each

iteration. This requires that the nearest-point and interpolation features of

the overset-grid technology be ported to the parallel compllters. Considering

that tile technology required for Tasks .1-5 is only in the formative stakes

of development on vector computers, the challenge of fully-developing this

software and implementing it in the parallel environment is formidable.

6.3 Flow Simulation (CFD) Requirements

In 1991, a state-of-the-art simulation of tile flow about a Harrier operating

in-ground effect required at)proximately 2.8 million points, 20 Mwords of run-

time memory, and about 40 hours of CPU time on a Cray Y-MP running

at a sustained speed of approximately 160 MFLOPS. Such a c¢,mputation

solves the Navier-Stokes equations for the viscous ttow about the]farrier

using, in this case, a simple algebraic turbulence model. The grid was the

coarsest possible that would still allow most of the important ttow features

to be resolved. The predicted flow features are in good agreement with tlight

tlow visualization [4'l].

It is estimated that to obtain "engineering-accuracy" predictions of sur-

face pressures, heat transfer rates, and overall forces, the grid size will have

to be increased to a minimum of 5.0 million points. If the _msteady motion

of the flow structures is to be resolved, at least 50,000 iterations will also

lye required. Also, more advanced turbulence modeling must be included.

Ill summary, we anticipate tile following minimum requirements in terms

of floating point operations for just the external flow simulation element of

future grand challenge corn put ations:

• 5,000,000 grid points

• 50,000 iterations

22

• 5,000operationsper point per iteration

• 101_operationsperproblem

Tile actual computationalspeedrequirementsfor sucha calculationde-
pendon the mode in which the calculation is carriedout. In a proof-of-
couceptmodesucha calculationmay becarriedout only onceasa "heroic
effort". If this couldbedonein 100to 1000hoursturn-around-time,it would
translateinto a sustainedspeedbetween3 and0.3GFLOPS.Designand au-
tomateddesignmodesrequireamuchlowerturn-around-timeandthusresult
in much higher requirementsfor computationalspeed. The corresponding
figuresaresummarizedin Table8.

Table8: Requirements for Flow Simulation
Solution Mode Turn-around-time Required Performance

t'voof-of-com:ept . 1000 - 100 hours 0.3 - 3 GI:LOPS

Design 10 - 1 hours 30 - 300 GFI,OPS

Automated Design 0.1 - 0.01 hours 3 - 30 TI:IX)PS

These computational requirements are accompanied by a corresponding

increase in tllelllol'y and storage requirements. Approximately .10 storage

locations are required per grid point. If all of the computational zones remain

in memory, this translates to a requirement for 200 million words of run-time

memory (to date, often a desirable feature for parallel systems). For unsteady

[low analysis 100-1000 time steps (at 8 words per point) must be stored. This

leads to a requirement of l-d0 gwowls of "disk" storage per problem.

If we compare these requirements with tile COml)uter resources required to

address the "grand challenges" of the 1980's (e.g., a 1.0 million point steady

Navier-Stokes simulation, on a Cray-2 class machine, of the external [low

about all aircraft at cruise) we arrive at Table 9.

We note in particular that a 5000 fold increase in data storage and ma-

nipulation capabilities will be required to address CFD grand challenges of

the 1990's. A single solution file h)r a time step will have up to 40 Mwords

(;t20 .Mbytes) ,f data. The above discussion assumes that the computation

for advancing the solution one time step can be carried <,it in about 10 sec-

onds. Even though it is not necessary to store a solution file at every time

step, these figures show the need tk)r a sustained]/O bandwidth of at least '10

23

Table9: Proof-of-concept requirements: 1980's vs. 1990's

100 hr. run time

run-time memory

"disk" storage

1980's

40 MFLOPS

35 Mwords

8 Mwords

1990's

3000 MFLOPS

200 Mwords

40000 Mwords

Ratio

75

6

5000

Mbytes/sec. ["or a more detailed discussion of I/O requirements for parallel

(IFI) see the report by llyan [39].

2"I

6.4 Grand Challenges of the 90's: Multi-disciplinary

computations

The discussion in tile previous section was restricted to prediction of tile ex-

ternal flow about an advanced fighter concept. As explained in subsection

2.1 the Grand Challenge computations of the 90's will be multi-disciplinary,

combining computatiolml techniques useful in analyzit g a tmmber of indi-

vi(lual areas such as structures, controls, and acoustics, in addition to the

baseline CFD simulations. It is possible in all these areas to derive estimates

for the performance requirements. These estimates are given in Table 10

as multiplicative factors of additional requirements over the single-discipline
baseline (TI) simulation.

Table 10: Increase in memory and CPU requirements over baseline
CFD sinmlation

Discipline Memory CPU Time

increase increase

Structural Dynamics

modal analysis

FF, M analysis

thermal analysis

Propulsion

inlet/nozzle simulation

engine performance deck

combustion model, e.g. scramjet

turbojet engine (full sire.)

Controls

control law integration

control surface aerodynamics
thrust vector control

control jets

x l

x2

x2

x2

x2

xd

x 10-100

xl

x2

x2

x2

x2
x'2

x2

x2

x2

x 10

x 10-100

xl

x2

x2

x2

Acoustics x 10 x 10

Numerical Optimization Design x 2 x 10-100

It is clear that computational resource requirements can increase rapidly

for multi-discil)lilmry COml)utations. If the corresponding factors for multi-

25

disciplinaryV/STOL aircraft designareextractedfrom Table 10,and com-
binedwith tile numbersfor tile baselineexternalaerodynamicsprediction,
quickly Gwordand Ileal'TELOP requirementsarise. Tile detailsaregiven
hi Table11 [361.

Table 11'
Run.

Flops and Run-tlme Memory Requirements for 5 Hour

BaseCFI)
Structural

thermal analysis
Prol)tdsion

inlet/nozzlesimulations
engineperformancedeck

Controls
control law integration
thrust vector control

Mwords GFLOPS

200 60

x2

x2

x2

xl

x2

X '2

x'2

x2

xl

x2

Total 2000 600

It should be noted that the factors in Table 10 are based on tile as-

sumption that the physical frequencies introduced because of the nlulti-

disciplinary integration can be resolved with the time steps required by the

aerodynamics sinlulation. Additional compute time may be required if the

multi-discil)linary system exhibits higher [requency modes which must be

resolved.

26

7 Conclusions

Table 12: Summary of Performance on Parallel Machines

(fraction of single processor Cray Y-MP performance)

Application CM-2 iPSC/860

32K proc. 128 proc.

Structured grid (LI, _)

{!nstruct ured grid*
Particle methods

0.76 0.91

0.91 2.05

0.50 2.50

*) result for 8K processors

The resttlts in Table 12 summarize most of the efforts discussed in this paper.

They demonst rate t hat on current generation parallel machines performance

on actual CFI) applications is obtained which is approximately equivalent to

the performance o[" one to two processors of a Cray Y-MP. All applications

considered here are not immediately parallelized and both on SIM]) and

MIMD machines considerable effort n lust be expended in order to obtaill an

ef[icient implementati(,i. It has been demonstrated 1)y tire results obtained

at NASA Ames that this can be done, and that super computer level perfor'-

mance can 1)e obtained on current generation parallel machines. Furthermore

the partMe simulation code on the CM-2 is a production code currently used

to obtain production results (see [ld]). The iPSC/860 implementation shot,ld

be in production use by the end of 1991.

Our results also demonstrate another feature which has been found across

a ntrmber of applications at NASA Ames: massively parallel machines quite

often obtain only a fraction of their peak performmtce on realistic al)plica-

titres. In the applications considered here, there are at least two requirements

which fl)rm the primary impediment in obtaining the peak realizable perfof

mance from these machines. One of these requirements is for unstructured.

general communication with low latency and high bandwidth, which arises

both in tire unstructured application and in partMe codes. The (_ther re-

quirement is for high t)andwidth for a global exchange as it occurs in array

transposition. This is important for the structiH'ed grid problems, since three

dimensional arrays haw, to be accessed in the direction of the three different

gri(t planes. Neither the (?M-2 nor the iPSC/860 deliver the commtmicatiolh

27

bandwidthnecessaryfor theseCFI) applications.Experiencehasshownthat
CFD applicationsrequireoil tile orderof onememoryreferenceper floating
point operation and a balanced systelll sh(,dd]lave a lllelllory t)andwidth

conlt)arable to its floating point performance. In these terms, current paral-

lel systems deliver only a fraction of tile required bandwidth.

It spite of these lyrOmising results all the high expectations for parallel

machines have not yet been met. In particular we do not believe that there

is or will 1)e a 10 GFLOPS sustained I)erformance parallel machine available

before 1993. Even on the new IntelTouchstone Delta machine the applica-

tions described here will i)erfolm at best in the 1 - 2 GFLOPS 2 range. The

question then is (to quote Tom Lasinski [:2.:1]): "So why are we still bullish

OH parallel computers?". The answer, also given in [2:1], is: "Parallel com-

puters have a tremendous growth t>otential. '' Even if we assutlle that CtUTellt
machine such as the (:M-2 and the lntel iPSC/S60 achieve only 1/.50 of their

peak performance on parallel CFD applications, we can extrapolate to the

near future and predict a great increase in performance. In 1995 a machine

based on commodity microprocessors with 160 Mltz, three results per clock

period, and 2048 processors is entirely likely and feasible. Such a machine

would have approximately 1 TFI,OPS peak performance. Even at 1/50 of

this peak performance, we would be able to perform CFD calculations at a

level of :20 GFLOI)S sustained. With iml)rovements il, hardware, sot)ware,

and algorithms we should be able to obtain even better performance.

As outlined in Section 6, these significant increases in compute power

are essential to accomplishing the computational Grand Challenges of tile

1990's. Even detailed single discipline computations will require GFLOP

performance, with the multi-disciplinary simulations becoming just feasible

on tile most advanced systems of the 1990's.

Acknowledgment. We wish to thank our colleagues with the NAS Applied

llesearch Branch, whose work has been discltssed here: 1). Bailey, E. l/arszcz,

R. l"atoohi, T. l,asinski, C. l_evit, \:. Venkatakrishnan, and S. WeeL'atunga.

We also thank T. lla|'th, 1)..lesl)ersen, T. Abeloff, K. Chawla, M. Smith,

(all NASA Ames), S. tlammond, and R. Schreiber at I{IA(!S, .1. McDonald

e llesearchors at NAS are aware that there are claims about multiple GFI,OPS perfor-
,llance on t.hesc sysl, cIllS. Ilowew'r, the discriminating reader is encouraged to study the
recent note by I). Bailey on "Twelw_ Ways to Fool the Masses When Giving Performance
l/esults on Parallel (7omputers'" [6].

:28

(Maspa,"Corp.) and P.Frederickson(Cray Research)for their contributions
to this summaryreport.

29

References

[1] P. A. Abeloff, W. t{. Van Dalsem, and F. (',.])ougherty. Thernlal Inter-

action between an Impinging l[ot ,let and a Conducting Solid Surface.

1990. AIAA Paper 90-0299.

[2] I). Bailey, E. Barszcz, .l. Barton. D. Browning, I{. Carter, l,. l)agum,

tl. t:atoohi, P. t:rederickson, T. Lasinski, II. Schreiber, 1t. Simon,

V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.

b_t. .I. of ,%pe:rcomputer Applicatim_s, 5(3):63 73, 1991.

(31 l). t:lai/ey. _. Barszcz, .1. F_arton, D. t3rowning, R. Carter, L. l)agum,

t_. Eatoohi, P. lerederickson. T. Lasinski. I{. Schreiber, H. Simon,

V. Venkatakrishnan, and S. Weeratullga. The NAS Parallel Benchmarks

- Summary and Preliminary Results. In ProceediJ_g:_ of Supercomp'_lti_g

"9i, ,41b_querque:, New Me::cico, pages 158 - 165, Los Alamitos, Califof

nia, [991. IEEE Computer Society Press.

[:l] 1). Bailey, E. l:larszcz, l{. Fatoohi, It. Simon, and S. Weeratul_ga. Perfof

mance Results on the]ntel Touchstone Gamma Prototype. In David W.

Walker aim Q,el_til_ F. Stout, editors, Proceedie_qxof the]:(f:h Dis-

tributed Memory Computi_zg Co'r_.ference, pages 1236 - 12,'16, Los Alami-

tos, California, 1990. IEEE Computer Society Press.

[5] I). tt. Bailey. Experience with Parallel (;omputers at NASA Ames.

Technical Report 11NI1-91-07, NASA Ames llesearch (:enter, Moffett

Field, (:A 9d035, February 1991.

[6] 1). tt. Bailey. Twelve \Vays to Fool the Masses when Giving Performance

I/esults on Parallel Computers. Supercomputi_. 9 Hevie:tv, pages 5'1 55,

August 1991.

[7] I). H. Bailey, .1. l{arton, T. Lasinski, and II. Simc, n (editors). The NAS

Parallel Benchmarks. 'i_chnical Report t¢NR-91-02, NASA Ames t{e-

search ('enter, Moffett Eield, CA 94035, .January 1991.

[8] E, Barszcz. One Year with an iPSC/$60. Technical Report HNt{-91-01,

NASA Ames l{esearch Center, Moffett l_'ield, CA 9:t035, .lamiary 1991.

3O

I9]

[10]

[111

[11]

[ls]

[16]

I T]

(18]

E. Barszcz and K. Chawla. F3D on the CM-2. In T. Pullianl, editor,

Compe_dium of ,4bstract,_, NASA CFD Co_fere,'l_ce, March. 1.9,()I_pages

56 -- 57. NASA Office oI"Aeronautics Exploration and Technology, March
1991.

T..I. Barth and D.C..lespersen. The Design and Application of Upwind

Schemes on Unstructured Meshes. 1989. AIAA Paper 89-0366.

,l. A. Benek, P. G. Buning, and .1. L. Steger. A 3-d Chimera Grid

Embedding Technique. 1985. AIAA Paper 85-1523.

,t. A. Benek, T. L. l)onegan, and N. E. Suhs. Extended Chimera (kid

Embedding Scheme with Application to Viscous Flows. 1987. AIAA

Paper 87-1126-CP.

L. Dagum. On the suitability of the Connection Machine for direct par-

tMe ._imulation. Technical 12eport 90.26, I{IACS, NASA Ames Research

(:enter, Moffett Eield, CA 94035, June 1990.

L. Dagum. lap I,eakage Flow Simulation for the Gravity Probe I_ Gas

Spinup. 1992. AIAA Paper 92-0559.

L. Dagum. Data Parallel Sorting for Particle Simulation. (.Jo_wurrt_cg:

Practice a_d l_:,rperiel_ce, (to appear), May 1992.

L. I)agum. Three 1)imensional Direct Particle Simulation on the (',on-

nection Machine. J. Th_:rmoph!tsics, (to appear) 1992.

E. Denning Dahl. Mapping and compiled communication on lhe (;on-

nection Machine system. In David W. Walker and Quentin 1". Stout.

editors, Proceedi_gs of the Fifth Distributed Memory Comp'u.ti'l_g Co_fir-

e_ce, pages 756 766, Los Alamitos, California, 1990. IEEE C'omputer

Society Press.

J. W. Fozard. 77_e .let V/STOL Harrier- A_ E'volu_tio_ar9 t_e:volu.tio_

i1_ 7',ctical AirPower. 1978. AIAA Professional Study Series.

S. ltammond. 3lappi_g U_structured Grid Com.p'utatio_s to Massivd9

Paralld (?ompute r._. Phl) thesis. 1992.

31

[2o]

[21]

[22]

[2 1]

[2,5]

[26]

{27]

[2s]

[29]

S. ltammond and T.J. Barth. On a massively parallel Euler solver for

unstructured grids. In llorst D. Simon, editor, t_esearck Direction,s il_

PorallH CFD. MIT Press, Cambridge(to appear), 1991.

S. Ilammond and R. Schreiber. Mapping l!nstructured Grid Problems

to the Connection Machine. Technical t{eport 90.22, RIACS, NASA

Ames Research Center, Moffett Field, CA 94035, October 1990.

T.L. tlolst, M. I). Salas, and R. W. ('.laus. The NASA (',omputational

Aerosciences A rogram - Toward _I_eraflol) (k)m put ing. 1992. A [A A Paper
92-0558.

Int el Corporat ion. i86"8 (;It- Bit Microprocessor t)'rogramme r _ l_efe:renc_

Manual. Santa Clara, California. 1990.

T. A. Lasinski. Massively parallel computing at NAS: Opportunities and

experiences. Presentation in the NAS 1Tser TeleVi(teo Seminar, March

1991.

K. l_ee. On the Floating Point Performance of the i860 Microprocessor.

Technical t:_eport ttNR-90-01.9, NASA Ames I{esearch Center, Moffett

l"iehl, (?A 9.1035, 1990.

(;. l_evit and I)..lespersen. Explicit and Implicit Sollltion of the Navier-

Stokes Equations on a Massively Parallel Computer. Technical report,

NASA Ames Research Center, Moffett Field, CA, 1988.

(ii. Levit and I). Jespersen. A (',omputational l:luid I)ynamics Algorithm

on a Massively Parallel Computer. Int..1. Sup_:rcomputer Appl., 3(4):9

27, 1989.

C. l_evit and D. Jespersen_. Nulnerical Simulation of a t'low Past a

Tapered (?ylinder. Technical Ileport RNt_-90-21, NASA Ames Research

Center. Moffett Eield, CA 9.1035, October 1990.

(_reou l_evit. Grid communication on the (",onnectlon' Machine: Analysis,

performance, iml)rovements. In tI. I). Simon, editor, ,%iel_.t_[ic Appli-

cation,s of tke: (:o_nectio_ Machiue, pages 316 332. World Scientific,
1989.

32

[3o]

[31]

[a2]

[33]

[a:l]

[35]

[3q

[:37]

[39]

Z. C. Lou. A Summary of CFS I/O Tests. Technical Report RNR-90-20.

NASA Ames Research Center, Moffett Fiehl. CA 9403,5, October 1990.

F.E. l,umpkin. De ve:lopme_t and Evaluation of Continuum Models for

7'z'a,slatio.t_al-Rotational Nonequilibrium. PhD thesis, Start ford I!niver-

sity, Dept. of Aeronautics and Astronautics, Stanford CA 9d305, April
1990.

,I. D. McDonald. A Com.putatio_all9 Efficient Particle Simulatio_

Method Suited to Vector Computer Architectures. PhD thesis, Stanford

17nivevsity, Dept. of Aeronautics and Astronautics, StanfoM CA 9.1305.
December 1989.

•1. D. McDonald. Particle Simulation in a Multiprocessor Environment.

1991. AIAA Paper 91-1366

V. Naik, N. Decker, and M. Nicoules. hnplicit CFD Applications on

Message Passing Multiprocessor Systems. In Horst D. Simon, editor,

Paralle:l CFD - bnplementatiol_s and Results Using Parallel Computer:,,

pages 103 132. MIT Press, Cambridge, Mass., 1992.

NAS Systems Division, NASA Ames Research Center. Nume:vical Aero-

dgnamic Simulation Program t)la_, October 1988.

National Aeronautics and Space Administration. Project PIa'I_ for the

Computational Aeroc_ciences Project of the NASA Hiyh Petformance:

Computb_g al_d Commu_ications Program (NASA HPCCP/CAS), May
1991.

A. l_othen, tl. Simon, and K.-P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. 5'L4M .1..Slat. A,al. Appl., 11(3):430 152,
1990.

T. H. Pulliam. Efficient Solution Methods for the Navier-Stokes [';qua-

tions. Lecture Notes for The Von Karman Institute for Fluid Dynamics

Lecture Series, .Jan. 20- 24, 1986.

,lames S. Ryan. ('oncurrent File System (CFS) I/O for CFD Al)plica-

tions. August 1991.

33

[,10]

[41]

[,12]

[,la]

[4:1]

1/. Schreiber. An Assessment of tile Connection Machine. Technical

Report 90.'10, RIACS, NASA Ames t{esearch Center, Mo[['ett Vield. ('.A

91035, .]une 1990.

It. D. Simon. Partitioning of unstructured l)roblems for parallel pro-

cesssing. ('ompttti_9,5'gst_ms il_ El_gi_ce:ri_ 9, 2(2/3):135 148, 1991.

tlorst D. Simon. Massive Parallelism at NAS. In Proceedittgs of the

,S'upe:rcomptlti_9 USA Pacific 199i (7o_@re_tce, pages 100 103, Santa

(':lara, California, June 1991. Meridian Pacific Group.

ltorst l). Simon and Leonardo l)agum. Experience in using SIMI) and

MIMD parallelism for computational fluid dynamics. In It. Vichnevet-

sky and .]..I.It. Miller, editors, Proceediws of the Idth IMA(:5' World

('o_9r_ss o_ Computatim_al a_d Applied M_thematics, pages 693 (;97.

(?riterion Press, l)ul)lin, Ireland, 1991.

M. tl. Smith, K. (lhawla, and W. R. Van I)alsem. Numerical Sim||latioI|

of a Complete STO\:I, Aircraft in Ground Effect. 1991. AIAA Paper

91-3293.

[15] W. t1. Van l)alsem, K. Chawla, M. II. Smith, and t'. A. Abeloff. Nu-
merical Simulation of Powered Lift Flows. In l)rocee:di_:]._ of the ll_te:r-

_atiol_al Poll,ered-Lift (:o_fi:re_ce:, London, l';ngland, August 1990. The

l{oyal Aeronautical Society.

[,'16] V. \:enkatakrishlmn, II. Simon, and T. Barth. A MIMI) implementa-

tion of a parallel Euler solver for unstructured grids. Technical lleport

RNt1-91-24, NASA Ames Research (?enter, Moffett l"ield, CA 9,1035,

September 1991.

[17] S. Yoon, I). Kwak, and I,. (q_ang. I,U-SGS Iml)licit Algorithm for Im-

plicit Three l)ilnensional Navier-Stokes Equations with Source Tel'In.

1989. AIAA Paper 89-196'1-('.P.

